A range of disparate coordinate systems were used for planetary data from different missions stored in PDS, which makes it difficult to search and correlate data from various instruments. Currently, all products in ODE are stored in planetocentric, positive longitude east, 0 to 360 degrees coordinates. Tables 24 illustrate the original coordinate system used in the PDS archive. ODE uses a variety of methods to obtain a location for different products. Most of the data coordinates stored in ODE are acquired from the attached or detached PDS labels. ODE also has data coordinates acquired from the Unified Planetary Coordinates (UPC) database. The method used for a particular product can be found under the product results page, metadata tab, at the bottom under ODE notes. NOTE: coordinates are for searching and display only and may vary in precision. Users should explore and understand the data set to determine how to precisely map the product.
The UPC project was carried out at the U. S. Geological Survey (USGS) and Jet Propulsion Laboratory (JPL). It provides easy access to planetary data in a set of unified, consistent coordinate systems (Becker et al., 2007), which is also consistent with the MRO and MOLA data.
The Planetocentric system has an origin at the center of mass of the body. The planetocentric latitude is the angle between the equatorial plane and a vector connecting the point of interest and the origin of the coordinate system. Latitudes are defined to be positive in the northern hemisphere of the body, where north is in the direction of Earth's angular momentum vector, i.e., pointing toward the hemisphere north of the solar system invariant plane. Planetocentric longitude is measured around the equator of the body from a prime meridian defined and adopted by international agreement. Longitudes increase toward the east making the Planetocentric system righthanded. Radius is the distance from the planetary body’s center of mass to the point of interest.
A spheroid usually approximates well to the shape of planets, because the shape of a rotating body in hydrostatic equilibrium is approximately a spheroid. Mapping parameters for different planetary bodies (Mars, Moon, Mercury, and Venus) are listed in Table 1 (Seidelmann et al., 2002; 2005; Davies et al., 1986). The first column gives the mean radius of the body. The standard errors of the mean radii indicate the accuracy of determination of these parameters due to inaccuracies of the observational data. The second and third columns give equatorial and polar radii for 'bestfit' spheroids. An ellipsoid has been adopted for Mars by the IAU with a polar radius of 3376.2 km and an equatorial radius of 3396.19 km. For Moon, Mercury, and Venus, a sphere is used as the reference surface.
Table 1. Mapping Parameters (unit: km)
Planet 
Mean Radius 
Equatorial Radius 
Polar Radius 
Standard 
Mars 
3389.5±0.2 
3396.19±0.1 
AVG 3376.2±0.1 N 3373.19±0.1 S 3379.21±0.1 
IAU2000 
Moon 
1737.4±1 
1737.4±1 
1737.4±1 
IAU2000 
Mercury 
2439.7±1.0 
2439.7±1.0 
2439.7±1.0 
IAU2000 
Venus 
6051.8±1.0 
6051.8±1.0 
6051.8±1.0 
IAU2000 
Venus 
6051 
6051 
6051 
IAU1985 
Most of the basemaps stored in ODE are provided by USGS. Map projection is based on spheres rather than ellipsoids for these basemaps because of the computational cost and the capabilities of commercial software applications. The adopted projection convention for these basemaps includes Equirectangular (also named Simple Cylindrical) and Polar Stereographic map projections. The global maps are in Equirectangular map projections using the planetocentric coordinate system with east positive longitude. Mars, Mercury and Moon used IAU2000 standard, and Venus used IAU1985 standard. The polar maps are stored in polar stereographic projections.
The Equirectangular projection (Snyder, 1987) is typically used at middle and lower latitudes. With this projection, all lines of latitude are parallel to one another, as is also the case with longitude lines. Parallels of latitude and meridians of longitude are straight lines that are perpendicular to one another. This map projection is centered on the equator. The map resolution is constant throughout the image. The Polar Stereographic projection (Snyder, 1987), ideal for maps covering the polar regions, minimizes scale and shape distortion at high latitudes. This projection is centered on the north or south pole. Lines of longitude extend radially from the pole, and parallels of latitude are concentric circles around the center. For Mars, the Polar Stereographic projection is approximated by adopting a spherical geometry with a polar radius of 3376.2 km.
More information on how to predefine ArcGIS projection files can be found in the USGS Astrogeology Mapping, Remotesensing, Cartography, Technology, and Research (MRCTR) GIS Lab website. Projection files can be downloaded from the MRCTR and ODE websites.
Table 2. Reference System Used for Mars Data in Different Missions
Mission 
Instrument 
Data_Set_ID 
Product_Type 
Reference System Used in Archive 
MRO 
CRISM 
MROMCRISM2EDRV1.0 
EDR 
IAU2000 planetocentric reference system with east longitude (0360ο) being positive 
MROMCRISM4/6CDRV1.0 
CDR (contains calibration files used to process EDRs to units of radiance or I/F) 

MROMCRISM6DDRV1.0 
DDR 

MROMCRISM6LDRV1.0 
LDR 

MROMCRISM3RDRTARGETEDV1.0 
TARGETED_RDR (TRDR) 

MROMCRISM5RDRMULTISPECTRALV1.0 
MAP_PROJECTED_MULTISPECTRAL_RDR (MRDR) 

MROMCRISM5RDRMPTARGETEDV1.0 
MTRDR (not available yet) 

CTX 
MROMCTX2EDRL0V1.0 
EDR 
Image coordinates (Lat, Lon) were computed using NAIF SPICE kernel by MSSS personnel or NAIF 

MARCI 
MROMMARCI2EDRL0V1.0 
EDR 
Using NAIF SPICE kernel 

HIRISE 
MROMHIRISE2EDRV1.0 
EDR 
N/A 

MROMHIRISE3RDRV1.0 
RDR (without the embedded map projection information) 
IAU2000 planetocentric 

MROMHIRISE3RDRV1.1 
RDRV11 (with the embedded map projection information) 

MROMHIRISE5DTMV1.0 
DTM 

MCS 
MROMMCS2EDRV1.0 
EDR 
IAU2000 planetocentric 

MROMMCS4RDRV1.0 
RDR 
Planetocentric spherical coordinates 

MROMMCS5DDRV1.0 
DDR (TBD) 

RSS 
MROMRSS1MAGRV1.0 
EDR 
SPK and CKF files can be converted to a wide range of coordinate frames by the NAIF reader routines. Other data types are not dependent on definition of a coordinate system. 

MROMRSS5SDPV1.0 
RSDMAP 
IAU2000 planetocentric 

MROMRSS5SDPV1.0 
SHADR 

MROMRSS5SDPV1.0 
SHBDR 

SHARAD 
MROMSHARAD3EDRV1.0 
EDR 
IAU2000 planetocentric reference ellipsoid 

MROMSHARAD4RDRV1.0 
RDR 

Mars Express (MEX) 
HRSC 
MEXMHRSC3RDRV2.0 
RDR 
Using SPICE kernel 
MEXMHRSC5REFDRMAPPROJECTEDV2.0 
REFDR (map projected image data) 
Planetographic spherical coordinates with east longitude being positive (r = 3396.0 km) 

MEXMHRSC5REFDRDTMV1.0 
REFDR_DTM 
Planetocentric spherical coordinates with east longitude being positive (r = 3396.0 km) 

SPICAM 
MEXY/MSPI2IREDRRAWXCRU/MARSV1.1 
EDR 
The SPICAM data products are not projected into any coordinate system 

MEXMSPI2IREDRRAWXMARSEXT1V1.0 
EDR 

MEXMSPI2IREDRRAWXMARSEXT2V1.0 
EDR 

MEXMSPI2IREDRRAWXMARSEXT3V1.0 
EDR 

MEXY/MSPI2UVEDRRAWXCRU/MARSV1.1 
EDR 

MEXMSPI2UVEDRRAWXMARSEXT1V1.0 
EDR 

MEXMSPI2UVEDRRAWXMARSEXT2V1.0 
EDR 

MEXMSPI2UVEDRRAWXMARSEXT3V1.0 
EDR 

MaRS 
MEXMMRS1/2/3NEV0001V1.0 
Raw data 
N/A 

MEXMMRS1/2/3EXT10736V1.0 
RDR 
N/A 

MEXMMRS1/2/3EXT21334V1.0 
RDR 
N/A 

MEXMMRS5OCC9101V2.0 
Reduced occultation data 
Planetocentric coordinates 

MARSIS 
MEXMMARSIS2EDRV1.0 
EDR 
Planetocentric coordinates 

MEXMMARSIS2EDREXT1V1.0 
EDR 
Planetocentric coordinates 

MEXMMARSIS3RDRSSV1.0 
RDR (MEX MARS MARSIS REDUCED DATA RECORD SUBSURFACE V1.0) 
Planetocentric coordinates 

MEXMMARSIS3RDRAISV1.0 
RDR (MEX MARS MARSIS RDR ACTIVE IONOSPHERE SOUNDING V1.0 
Measurements of wave electric fields, which are presented as detected by the sensors and are not rotated into any other coordinate system. 

MEXMMARSIS3RDRAISEXT1V1.0 
RDR 

MEXMMARSIS3RDRAISEXT2V1.0 
RDR 

MEXMMARSIS3RDRAISEXT3V1.0 
RDR 

OMEGA 
MEXMOMEGA2EDRFLIGHTV1.0 
EDR 
IAU2000 planetocentric 

MEXMOMEGA2EDRFLIGHTEXT1V1.0 
EDR 

MEXMOMEGA2EDRFLIGHTEXT2V1.0 
EDR 

PFS 
MEXMPFS2EDRNOMINALV1.0 
EDR 
planetocentric coordinates system 

MEXMPFS2EDREXT1V1.0 
EDR 

MEXMPFS2EDREXT2V1.0 
EDR 

MEXMPFS2EDREXT3V1.0 
EDR 

Mars Odyssey 
GRS 
ODYMGRS2EDRV1.0 
EDR 
IAU2000 planetocentric 
ODYMGRS5AHDV1.0 
AVERAGED_HEND_DATA (AHD) 

ODYMGRS5ANDV1.0 
AVERAGED_NEUTRON_DATA (AND) 

ODYMGRS5SGSV1.0 
SUMMED_GAMMA_SPECTRA (SGS) 

ODYMGRS4DHDV1.0 
DERIVED_HEND_DATA (DHD) 

ODYMGRS4DNDV1.0 
DERIVED_NEUTRON_DATA (DND) 

ODYMGRS4CGSV1.0 
CORRECTED_GAMMA_SPECTRA (CGS) 

ODYMGRS5ELEMENTSV1.0 
ELEMTS  Element Concentrations 
N/A 

THEMIS 
VISEDR; IREDR; VISRDR; IRRDR; VISABR; IRBTR 
IAU2000 planetocentric 

MARIE 
ODYMMAR2REDRRAWDATAV1.0 
REDRs 
MARIE's internal coordinate system is defined by the geometry of the detector. The PSDs have their own coordinate system in the sense that each strip (corresponding to a row or a column) is assigned a sequential number from 1 to 24. These values are not referenced to any other coordinate system, as the primary purpose of the PSDs is to calculate the angle at which incident particles traverse the silicon detectors. 

ODYMMAR3RDRCALIBRATEDDATAV1.0 
RDRs 

Radio Science 
ODYMRSS1RAWV1.0 
AGK/ion/ODF/opt/sak/sff/soe/spk/tck/tnf/tro/wea 
SPK, TCK, and SAK files can be converted to a wide range of coordinate frames by the NAIF reader routines. Other data types are not dependent on definition of a coordinate system. 

Accelerometer 
TBD 

Mars Global Surveyor (MGS) 
MOCNA / MOCWA 
MGSMMOCNA/WA2DSDPL0V1.0 
NADSDP / WADSDP 
IAU1994 planetographic reference system (re = 3397.0 km; rp = 3375.0 km) 
MGSMMOCNA/WA2SDPL0V1.0 
NASDP / WASDP 

MOLA 
MGSMMOLA3PEDRL1AV1.0 
PEDR 
IAU2000 planetocentric (r = 3396.0 km) 

MGSMMOLA5MEGDRL3V1.0 
MEGDR  Mission Experiment Gridded Data Record 
IAU2000 planetocentric (Davies et al., 1994; Duxbury et al., 2001; Seidelmann et al., 2002) 

MGSMMOLA5SHADRV1.0 
SHADR 
IAU 1991(Davies et al., 1992), planetocentric, with longitudes measured positive east. 

MGSMMOLA3PRDRL1AV1.0 
PRDR 
IAU2000 planetocentric 
Note
•  CRISM: Compact Reconnaissance Imaging Spectrometers for Mars 
•  CTX: Context Camera 
•  GRS: Gamma Ray Spectrometer 
•  HiRISE: High Resolution Imaging Science Experiment 
•  HRSC: High Resolution Stereo Camera 
•  MARCI: Mars Color Imager 
•  MARIE: Martian Radiation Environment Experiment 
•  MARSIS: Mars Advanced Radar for Subsurface and Ionosphere Sounding 
•  MCS: Mars Climate Sounder 
•  MOC: Mars Orbiter Camera 
•  MOLA: Mars Orbiter Laser Altimeter 
•  MRO: Mars Reconnaissance Orbiter 
•  MaRS: Mars Express Orbiter Radio Science 
•  OMEGA: Observatoire Mineralogie, Eau, Glaces, Activite 
•  PFS: Planetary Fourier Spectrometer 
•  RSS: Radio Science Subsystem 
•  SHARAD: Shallow Radar 
•  SPICAM: Spectroscopy for the Investigation of Characteristics of the Atmosphere of Mars 
•  THEMIS: The Thermal Emission Imaging System 
Table 3. Reference System Used for Moon Data in Different Missions
Mission 
Instrument 
Data_Set_ID 
Product_Type 
Reference System Used in Archive 
Clementine 
HIRES 
CLEM1LH5DIMHIRESV1.0 
MDIM 
Planetographic spherical coordinates with r = 1737.4 km 
HIRES/LWIR/NIR/UVVIS/ASTAR/BSTAR 
CLEM1L/E/YA/B/U/H/L/N2EDRV1.0 
EDR 
Planetocentric 

UVVIS 
CLEM1LU5DIMBASEMAPV1.0 
MDIM 5Band Mosaic 
Planetographic spherical coordinates with r = 1737.4 km 

CLEM1LU5DIMUVVISV1.0 
MDIM Global Basemap Mosaic 

LIDAR 
CLEM1LLIDAR3TOPOV1.0 
TOPO Raw Data 
N/A 

CLEM1LLIDAR5TOPOV1.0 
TOPO 
Planetocentric (Williams et al., 1993; Dickey et al., 1994) 

RSS 
CLEM1LRSS1BSRV1.0 
Raw Data Record 
SPK ephemeris files and CK attitude files are produced for the J2000 inertial reference frame. SPICE reader routines may be used to convert these to other coordinate systems. Other data types are not dependent on definition of a coordinate system. 

CLEM1LRSS5BSRV1.0 
RDR 
Planetocentric system with positive east longitude (r = 1737.4 km) 

CLEM1LRSS5GRAVITYV1.0 
GRAVITY 
Planetocentric (Davies et al., 1992) 

LWIR 
CLEM1LLWIR3RDRV1.0 
RDR 
Planetocentric 

Lunar Prospector (LP) 
{GRS, NS, APS, MAG, ER} 
LPLENG/GRS/NS/APS/MAG/ER1MDRV1.0 
MDR 
Selenocentric/selenographic 
GRS 
LPLGRS3RDRV1.0 
RDR 
N/A 

NS 
LPLNS3RDRV1.0 
RDR 
N/A 

RSS 
LPLRSS5GRAVITYV1.0 
GRAVITY 
Planetocentric system with positive east longitude (r = 1738.0 km) (Newhall and Williams, 1997) 

LPLRSS5LOSV1.0 
LOS 
Planetocentric system (Newhall and Williams, 1997) 

MAG 
LPLMAG4SUMMLUNARCRDS5SECV1.0 
Magnetic field data from LP MAG 
in two different coordinate systems: selenocentric solar ecliptic (SSE) and bodyfixed selenographic (SEL) 

LPLMAG4LUNARFIELDTSV1.0 
LP MAG Level 2 Data (CODMAC Level 4): Lunar Magnetic Field Time Series V1.0 
in two coordinate systems: selenographic (SG) coordinates; and east, north, and radial (ENR) coordinates 

LPLMAG5LUNARFIELDBINSV1.0 
LP MAG Level 3 Data (CODMAC Level 5): Lunar Magnetic Field Bins V1.0 
Measurements in east, north, and radial (ENR) coordinates 

LPLMAG5SURFACEFIELDMAPV1.0 
LP MAG Level 4 Data (CODMAC Level 5): Surface Magnetic Field Maps V1.0 
Selenographic with mean lunar radius (1738 km) 

ER 
LPLER4SUMMOMNIDIRELEFLUXV1.0 
low resolution data from LP ER 
N/A 

LPLER3RDRHIGHRESFLUXV1.0 
high resolution data from LP ER 
N/A 

LPLER3RDR3DELEFLUX80SECV1.0 
3D spectrum data from LP ER 
in ''despun spacecraft'' (SCD) coordinates, closely related to GSE coordinates. (http://starbrite.jpl.nasa.gov/pds/viewProfile.jsp?dsid=LPLER3RDR3DELEFLUX80SECV1.0) 

LPLER4ELECTRONDATAV1.0 
LP ER Level 2 Data (CODMAC Level 4) 
N/A 

LRO 
All LRO data products including LROC, LOLA, LAMP GDR, LEND, DIVINER and MiniRF use a common Lunar Coordinate System unless being specified in the SIS document. See LRO Project and LGCWG White Paper. The planetocentric coordinates were used, which are compatible with the one used within the PDS for Clementine data. 

Exceptions: No coordinate system applicable for data sets: Diviner EDR/PRP, LEND EDR/RDR, LAMP EDR/RDR, MiniRF CDR, LOLA EDR/SHA, and LROC SDRPHO. See product SIS documents. 

ISRO’s Chandrayaan1 
MiniRF and M3 use the planetocentric coordinate system, which is the same as the LRO instrument. 
Note
•  CRaTER: Cosmic Ray Telescope for the Effects of Radiation 
•  DIVINER: Diviner Lunar Radiometer Experiment 
•  HIRES: High Resolution Camera 
•  LAMP: LymanAlpha Mapping Project 
•  LEND: Lunar Exploration Neutron Detector 
•  LGCWG: Lunar Geodesy and Cartography Working Group 
•  LIDAR: Laser Image Detection and Ranging 
•  LOLA: Lunar Orbiter Laser Altimeter 
•  LROC: Lunar Reconnaissance Orbiter Camera 
•  LWIR: Long Wavelength Infrared 
•  M3: Moon Mineralogy Mapper 
•  MiniRF: Miniaturized Radio Frequency 
•  MiniSAR: Miniature Synthetic Aperture Radar, also called Forerunner 
•  NIR: NearInfrared 
•  UVVIS: Ultraviolet/Visible 
Table 4. Reference System Used for Mercury Data in Different Missions
Mission 
Reference System Used in Archive 
MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) 
There are two general coordinate systems in use for the MESSENGER project: • The celestial reference system used for target and spacecraft position and velocity vectors and camera pointing. • The planetary coordinate system for geometry vectors and target location. The celestial coordinate system is J2000 (Mean of Earth equator and equinox of J2000). The planetary coordinate system is planetocentric system with east longitude being positive. 
Table 5. Reference System Used for Venus Data in Different Missions
Mission 
Reference System Used in Archive 
MESSENGER at Venus 
There are two general coordinate systems in use for the MESSENGER project: • The celestial reference system used for target and spacecraft position and velocity vectors and camera pointing. • The planetary coordinate system for geometry vectors and target location. The celestial coordinate system is J2000 (Mean of Earth equator and equinox of J2000). The planetary coordinate system is planetocentric system with east longitude being positive. 
Magellan Mission 
The ALTIMETRIC AND RADIOMETRIC Global products shall adopt the J2000 coordinate system for all inertial values, i.e. those that define the motion of the spacecraft relative to celestial objects. Locations on the Venus surface shall be expressed in a Venus bodyfixed reference frame (Davies et al., 1992B). 
Note: The global basemaps of Venus used IAU1985 standard.
Related documents:
1.  Becker, K.J., L.R. Gaddis1, L.A. Soderblom, J.A. Anderson, J.M. Barrett, T.L. Becker, T.M. Hare, S.C. Sides, D.L. Soltesz, A. Stanboli, R.M. Sucharski, T.L. Sucharski, and K.N. Winfree (2007), The Unified Planetary Coordinates Database, 38th Lunar and Planetary Sciences Conference, March 12  16, 2007. League City, Texas. (abstract) [Url: http://www.lpi.usra.edu/meetings/lpsc2007/pdf/2022.pdf]. 
2.  Davies, M.E., V.K. Abalakin, M. Bursa, T. Lederle, and J. H. Lieske (1986), Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites  1985, Celestial Mechanics (ISSN 00088714), Vol. 39, pp. 103113. 
3.  Davies, M.E., V.K. Abalakin, A. Brahic, M. Bursa, B.H. Chovitz, J.H. Lieske, P.K. Seidelmann, A.T. Sinclair, and Y.S. Tjuflin (1992A), Report of the IAU/IAG/COSPAR working group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1991, Celestial Mechanics and Dynamical Astronomy, Vol. 53, pp. 377397. 
4.  Davies, M.E., et al., (1992B), The rotation period, direction of the North Pole, andgeodetic control network of Venus, J. Geophys. Res., 97 (E8), pp. 1314113151. 
5.  Davies, M.E., V.K. Abalakin, M. Bursa, J.H. Lieske, B. Morando, D. Morrison, P.K. Seidelman, A.T. Sinclair, B. Yallop, and Y.S. Tjuflin (1994), Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites, Celestial Mechanics and Dynamical Astronomy, Vol. 63, pp. 127148. 
6.  Dickey, J., J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shellus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, and C.F. Yoder (1994), Lunar Laser Ranging: A Continuing Legacy of the Apollo Program, Science, 265, pp. 482490. 
7.  Duxbury, T.C., R. Kirk, and B.A. Archinal (2001), Mars Geodesy/Cartography Working Group recommendations on Mars cartographic constants and coordinate systems, International Society for Photogrammetry and Remote Sensing, WG IV/9: Extraterrestrial Mapping Workshop "Planetary Mapping 2001", USGS, Flagstaff, Arizona. 
8.  Hare, T.M. (2008), ArcMap 8.x and 9.x Planetary Projection Tutorial 14 [Url: http://webgis.wr.usgs.gov/pigwad/tutorials/planetarygis/arcmap_projections.htm]. 
9.  LRO Project (2008), A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter and Lunar Datasets, LRO Project and LGCWG White Paper, version 5 of October 1 [Url: http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper1008.pdf]. 
10.  Newhall, X.X., and J.G. Williams (1997), Estimation of the Lunar Physical Librations, Celestial Mechanics and Dynamical Astronomy, 66, pp. 2130. 
11.  Planetary Science Data Dictionary Document, JPL D7116, Rev. E, August 28, 2002. 
12.  Seidelmann, P.K. (Chair), V.K. Abalakin, M. Bursa, M.E. Davies, C. De Bergh, J.H. Lieske, J. Oberst, J.L. Simon, E.M Standish, P. Stooke, and P.C. Thomas (2002), Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotation Elements of the Planets and Satellites: 2000, Celestial Mechanics and Dynamical Astronomy, 82, pp. 83110. 
13.  Seidelmann, P.K. (Chair), B.A. Archinal (ViceChair), M.F. A'Hearn, D.P. Cruikshank, J.L. Hilton, H.U. Keller, J. Oberst, J.L. Simon, P. Stooke, D.J. Tholen, and P.C. Thomas (2005), Report Of The IAU/IAG Working Group On Cartographic Coordinates And Rotational Elements: 2003, Celestial Mechanics and Dynamical Astronomy, 91, pp. 203215. 
14.  Snyder, J.P. (1987), Map Projections, U.S. Geological Survey Professional Paper 1395. 
15.  Williams, J. G., X.X. Newhall, and E.M. Standish (1993), Users of Ephemerides of the EarthMoon System, JPL Internal Memorandum, December 18. 